4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes

The historical development of atomic structure provides a good example of how scientific ideas and explanations have developed over time as new evidence emerges. The arrangement of elements in the modern periodic table can be explained in terms of atomic structure, which provides evidence for the model of a nuclear atom with electrons in energy levels.

Topic	Student Checklist	R	Α	G
ge and	State that everything is made of atoms and recall what they are			
	Describe what elements and compounds are			
	State that elements and compounds are represented by symbols; and			
har	use chemical symbols and formulae to represent elements and			
ic c	compounds			
lon	Write word equations and balanced symbol equations for chemical			
ecti	reactions, including using appropriate state symbols			ļ
, el	HT ONLY: Write balanced half equations and ionic equations			
ass	Describe what a mixture is			
E S	Name and describe the physical processes used to separate mixtures			
mie	and suggest suitable separation techniques			
ato	Describe how the atomic model has changed over time due to new			
ive	experimental evidence, inc discovery of the atom and scattering			
es	experiments (inc the work of James Chadwick)			
ols, relat sotopes	Describe the difference between the plum pudding model of the atom			
sloc	and the nuclear model of the atom			
/mt	State the relative charge of protons, neutrons and electrons and			
l, s,	describe the overall charge of an atom			
ton	State the relative masses of protons, neutrons and electrons and describe the distribution of mass in an atom			
e a	Calculate the number of protons, neutrons and electrons in an atom			
f th	when given its atomic number and mass number			
el o	Describe isotopes as atoms of the same element with different			
ode	numbers of neutrons			
e U	Define the term relative atomic mass and why it takes into account the			
npl	abundance of isotopes of the element			
4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes	Calculate the relative atomic mass of an element given the percentage			
	abundance of its isotopes			
4.1.	Describe how electrons fill energy levels in atoms, and represent the			
	electron structure of elements using diagrams and numbers			

Topic 2 - Bonding, structure and properties of matter

Chemists use theories of structure and bonding to explain the physical and chemical properties of materials. Analysis of structures shows that atoms can be arranged in a variety of ways, some of which are molecular while others are giant structures. Theories of bonding explain how atoms are held together in these structures. Scientists use this knowledge of structure and bonding to engineer new materials with desirable properties. The properties of these materials may offer new applications in a range of different technologies.

Торіс	Student Checklist	R	Α	G
4.2.1 Chemical bonds, ionic, covalent and metallic	Describe the three main types of bonds: ionic bonds, covalent bonds and metallic bonds in			
	terms of electrostatic forces and the transfer or sharing of electrons			
	Describe how the ions produced by elements in some groups have the electronic structure			
	of a noble gas and explain how the charge of an ion relates to its group number			
ц р	Describe the structure of ionic compounds, including the electrostatic forces of attraction,			
an	and represent ionic compounds using dot and cross diagrams			
ent	Describe the limitations of using dot and cross, ball and stick, two and three-dimensional			
valo	diagrams to represent a giant ionic structure			
Ô	Work out the empirical formula of an ionic compound from a given model or diagram that			
nic,	shows the ions in the structure			
ior	Describe covalent bonds and identify different types of covalently bonded substances, such			l
ds,	as small molecules, large molecules and substances with giant covalent structures			
uou	Represent covalent bonds between small molecules, repeating units of polymers and parts			
alb	of giant covalent structures using diagrams			
nic	Draw dot and cross diagrams for the molecules of hydrogen, chlorine, oxygen, nitrogen,			
her	hydrogen chloride, water, ammonia and methane			
1 C	Deduce the molecular formula of a substance from a given model or diagram in these forms			
1.2.	showing the atoms and bonds in the molecule			
4	Describe the arrangement of atoms and electrons in metallic bonds and draw diagrams the			
	bonding in metals			
ч-	Name the three States of matter, identify them from a simple model and state which			
o si	changes of state happen at melting and boiling points			
rtie	Explain changes of state using particle theory and describe factors that affect the melting			
ope	and boiling point of a substance			
structure are related to the properties of substances	HT ONLY: Discuss the limitations of particle theory			
he	Recall what (s), (l), (g) and (aq) mean when used in chemical equations and be able to use			
5	them appropriately			
ed	Explain how the structure of ionic compounds affects their properties, including melting and			
lato	boiling points and conduction of electricity (sodium chloride structure only)			
e re	Explain how the structure of small molecules affects their properties			
ucture are r substances	Explain how the structure of polymers affects their properties			
ıre sta	Explain how the structure of giant covalent structures affects their properties			
sub	Explain how the structure of metals and alloys affects their properties, including explaining			
stru.	why they are good conductors			
	Explain why alloys are harder than pure metals in terms of the layers of atoms			
gar	Explain the properties of graphite, diamond and graphene in terms of their structure and			
ding	bonding			
onc	Describe the structure of fullerenes, and their uses, including Buckminsterfullerene and			
ē ≥	carbon nanotubes			I
P	Compare the dimensions of nanoparticles to other particles and explain the effect of their			
4.2.2 How bonding and	surface area to volume ratio on their properties			
4.2	Discuss the applications of nanoparticles and their advantages and disadvantages, including			
	uses in medicine, cosmetics, fabrics and the development of catalysts			I

Topic 5 – Energy Changes

Understanding of chemical changes began when people began experimenting with chemical reactions in a systematic way and organising their results logically. Knowing about these different chemical changes meant that scientists could begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the Earth makes use of the way that some elements and compounds react with each other and how easily they can be 'pulled apart'.

Торіс	Student Checklist	R	Α	G
-	Describe how metals react with oxygen and state the compound they form, define			
4.4.1 Reactivity of metals	oxidation and reduction			ĺ
	Describe the arrangement of metals in the reactivity series, including carbon and			
	hydrogen, and use the reactivity series to predict the outcome of displacement			
fm	reactions			
γo	Recall and describe the reactions, if any, of potassium, sodium, lithium, calcium,			
ivit	magnesium, zinc, iron and copper with water or dilute acids			
act	Relate the reactivity of metals to its tendency to form positive ions and be able to			
Re	deduce an order of reactivity of metals based on experimental results			
4.1	Recall what native metals are and explain how metals can be extracted from the			
4.	compounds in which they are found in nature by reduction with carbon			
	Evaluate specific metal extraction processes when given appropriate information and			
	identify which species are oxidised or reduced			
	HT ONLY: Describe oxidation and reduction in terms of loss and gain of electrons			
	HT ONLY: Write ionic equations for displacement reactions, and identify which			
	species are oxidised and reduced from a symbol or half equation			
	HT ONLY: Explain in terms of gain or loss of electrons that the reactions between			
	acids and some metals are redox reactions, and identify which species are oxidised			
	and which are reduced (Mg, Zn, Fe + HCl & H ₂ SO ₄)			
	Explain that acids can be neutralised by alkalis, bases and metal carbonates and list			
	the products of each of these reactions			
	Predict the salt produced in a neutralisation reaction based on the acid used and the			
	positive ions in the base, alkali or carbonate and use the formulae of common ions to			
	deduce the formulae of the salt			
<u>v</u>	Describe how soluble salts can be made from acids and how pure, dry samples of			
4.4.2 Reactions of acids	salts can be obtained			
ofa	Required practical 1: preparation of a pure, dry sample of a soluble salt from an			
us o	insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water			
tio	bath or electric heater to evaporate the solution			
eac	Recall what the pH scale measures and describe the scale used to identify acidic,			
2 R	neutral or alkaline solutions			
4	Define the terms acid and alkali in terms of production of hydrogen ions or hydroxide			
4	ions (in solution), define the term base			
	Describe the use of universal indicator to measure the approximate pH of a solution			
	and use the pH scale to identify acidic or alkaline solutions			
	Describe how to carry out titrations using strong acids and strong alkalis only			
	(sulfuric, hydrochloric and nitric acids to find the reacting volumes accurately			
	HT ONLY: Calculate the chemical quantities in titrations involving concentrations in			
	mol/dm ³ and in g/dm ³			
	Required practical 2: determination of the reacting volumes of solutions of a strong			
	acid and a strong alkali by titration			
	HT ONLY: Use and explain the terms dilute and concentrated (in terms of amount of			
	substance) and weak and strong (in terms of the degree of ionisation) in relation to			
	acids			

	HT ONLY: Explain how the concentration of an aqueous solution and the strength of an acid affects the pH of the solution and how pH is related to the hydrogen ion concentration of a solution	
Electrolysis	Describe how ionic compounds can conduct electricity when dissolved in water and describe these solutions as electrolytes	
	Describe the process of electrolysis	
	Describe the electrolysis of molten ionic compounds and predict the products at each electrode of the electrolysis of binary ionic compounds	
	Explain how metals are extracted from molten compounds using electrolysis and use the reactivity series to explain why some metals are extracted with electrolysis instead of carbon	
4.4.3	Describe the electrolysis of aqueous solutions and predict the products of the electrolysis of aqueous solutions containing single ionic compounds	
	Required practical 3: investigate what happens when aqueous solutions are	
	electrolysed using inert electrodes	
	HT ONLY: Describe the reactions at the electrodes during electrolysis as oxidation	
	and reduction reactions and write balanced half equations for these reactions	